Tout comprendre : IA, Machine learning, Deep learning (2024)

IA, ML, DL : différences expliquées. Guide des technologies d'intelligence artificielle pour entreprises. Applications concrètes et avantages comparés.
(Partenariats sélectionnés avec soin)
👇 ESSAYEZ DÈS MAINTENANT 👇
hero image blog

Résumé : Ce qu'il faut savoir

Les technologies du traitement de la compréhension du langage naturel, de l'intelligence artificielle (IA), du deep learning et du machine learning sont des outils puissants qui offrent aux entreprises de nouvelles possibilités.

Elles peuvent être utilisées pour améliorer leurs processus métier, automatiser des tâches répétitives et analyser des données complexes.

Dans cet article, vous apprendrez ce que sont ces technologies et comment elles peuvent améliorer votre entreprise.

Nous commencerons par une présentation rapide de l'intelligence artificielle, du deep learning et du machine learning et quelles différences ont-ils.

Démarrons.

Différences entre l'intelligence artificielle, le Deep Learning et le Machine Learning

L'Intelligence Artificielle (ou IA) est une data science qui étudie comment rendre les machines plus intelligentes avec ces algorithmes en leur permettant de réaliser des tâches qui exigeaient traditionnellement l'intervention humaine.

Différence Intelligence Artificiellle, Deep Learning, Machine Learning

Le Deep Learning avec le Machine Learning sont des branches de l'IA (intelligence artificielle) qui visent à faire progresser les capacités d’apprentissage automatique de la machine :

  • Le Deep Learning repose sur la mise en œuvre & le perfectionnement de réseaux de neurones profonds pour apprendre à partir de volume de données.
  • Le Machine Learning s'appuie sur l'utilisation d'algorithmes pour permettre aux machines de résoudre des problèmes complexes sans être directement programmées.

1. Intelligence Artificielle (IA)

Sondage : Les français et l'IA
Source : LeParisien

L'Intelligence Artificielle est un domaine des sciences qui consiste à créer des systèmes informatiques capables de réaliser des tâches complexes. Cette technologie s'appuie sur les algorithmes et le machine learning pour prendre des décisions et effectuer des actions basées sur ces critères.

En effet, L'IA est capable d'analyser et d'interpréter des données complexes, et est souvent utilisée pour automatiser les processus métier et faciliter l’exécution de tâches répétitives.

L'IA peut également être appliquée aux conversations pour produire une interaction naturelle entre l'utilisateur et la machine et donc d'agir comme des humains.

2. Deep Learning

le deep learning est un réseau de neurones plus complexe

Le Deep Learning est un sous-domaine de l'IA artificielle qui utilise de réseaux de neurones profonds pour apprendre grâce à des données.

Par exemple, ces réseaux peuvent être construits à partir de couches successives et entraînés avec une grande variété de méthodes d'optimisation, afin qu'ils puissent effectuer des tâches complexes telles que la classification d'images, le traitement du langage naturel et la prédiction.

Pour faire simple, des réseaux de neurones profonds sont en fait des algorithmes auto-apprenants, car ils peuvent intégrer différents types de données pour produire des résultats précis qui évoluent au fur et à mesure que les données se modifient.

3. Machine Learning

Part des technologies de Machine Learning
Source : Datanyze

Le ML est une branche de l'Intelligence Artificielle qui permet à des systèmes informatiques d'apprendre à partir d'informations présentes.

C'est ce type de technologie s'appuie sur l'utilisation des algorithmes pour permettre aux machines de résoudre des problèmes complexes sans être directement programmées.

Elle repose sur l'identification ainsi que le traitement des data par la machine, puis sur la génération automatique d’algorithmes afin de trouver des modèles de prédiction à partir de volume de données existantes.

Pour cela, le ML peut être appliqué à divers domaines, tels que les visages, la reconnaissance vocale ou encore les produits recommandés par un site Web.

Comment les technologies d'intelligence artificielle peuvent améliorer votre entreprise :

Analyse des données

Les technologies liées à l'intelligence artificielle sont en mesure de vous donner un grand coup de main dans votre entreprise, par exemple :

  • automatiser & optimiser la collecte, le traitement & l'utilisation des données.
  • extraire des informations pertinentes à partir d'ensembles de données volumineux.
  • générer des réponses plus précises aux questions posées par les clients.
  • gagner du temps & d'améliorer l'efficacité du département informatique.

Facilite des tâches répétitives

Les technologies liées à l'intelligence artificielle sont en mesure de vous donner un grand coup de main dans votre productiv, par exemple :

  • automatiser certaines tâches répétitives & à les rendre plus efficaces.
  • surveiller & améliorer le processus de production.
  • répondre aux questions des clients & ainsi économiser du temps & de l’argent.
  • trouver des lacunes qui affectent la productivité.

Automatisation des processus métier

Les technologies AI peuvent être utilisées pour automatiser & streamliner les processus métier :

  • développer des solutions plus intelligentes qui peuvent améliorer la productivité & le rendement.
  • aider à réduire les tâches nécessaires & à fournir une assistance client plus rapide & plus précise.
  • apprendre rapidement à partir des data afin de faciliter l’automatisation des processus métier.

Machine learning vs. deep learning : comment choisir ?

Machine Learning VS Deepl Learning
Source : DLTLabs

Le Machine Learning et le Deep Learning sont tous deux des formes d'intelligence artificielle qui peuvent être utilisées pour résoudre des problèmes complexes. Bien qu’ils soient similaires, ils ne fonctionnent pas exactement de la même manière & offrent différents avantages.

Le Machine Learning est une méthode générale d'apprentissage automatique qui peut être utilisée pour résoudre de nombreux types de problèmes. Il est capable d'analyser les données entrantes & d'identifier les modèles qui y sont liés. Il peut également être utilisé pour identifier les tendances à court terme utiles aux décisions commerciales.

Au contraire, le Deep Learning (DL) est une forme plus avancée du Machine Learning basée sur l’utilisation de réseaux neuronaux profonds ou "Deep Nets". Ces réseaux sont capables de capturer des liens complexes entre différents niveaux d’abstraction afin de résoudre des problèmes très spécifiques & complexes.

En choisissant entre le Machine Learning & le Deep Learning, vous devrez évaluer vos besoins en matière d'IA selon divers critères :

  • Type de problème à résoudre
  • Quantité & type de données disponibles
  • Ressources disponibles pour mettre en œuvre & maintenir votre algorithme
  • Temps disponible pour obtenir des résultats Si vous avez beaucoup de données, un grand ensemble analytique & des ressources limitées, le ML serait probablement la meilleure option car il est plus facile à mettre en œuvre que le DL.

En d'autres termes, si vous recherchez un algorithme très précis pour traiter un type spécifique de données, alors le DL serait la solution à privilégier.

Histoire du Deep learning

Avec Geoffrey Hinton et Yoshua Bengio, LeCun est considéré comme l'un des "trois mousquetaires" du deep learning dans le monde.

Geoffrey Hinton & Yoshua Bengio, LeCun

Comme eux, LeCun a défendu l'idée que les réseaux neuronaux artificiels qui imitent le un être humain permettraient aux ordinateurs de développer des compétences qui ne pourraient pas être programmées manuellement.

Il s'est heurté à une forte résistance de la part de l'establishment informatique qui, depuis longtemps, considérait le concept de réseaux neuronaux artificiels comme relevant de la science-fiction.

LeCun a "en quelque sorte porté le flambeau à travers les âges sombres", a déclaré Hinton à Wired en 2014.

LeCun est largement reconnu pour avoir fait progresser les réseaux neuronaux convolutifs.

réseaux neuronaux convolutifs

Dès la fin des années 80, il a proposé une architecture pour construire des réseaux neuronaux qui aideraient les ordinateurs à reconnaître les images utilisé pour la reconnaissance faciale.

En 1994, alors qu'il travaillait pour AT&T Bell Labs, il a finalement créé un réseau capable d'identifier des caractères manuscrits. En 1998, les banques utilisaient cette technologie pour lire plus de 10 % de tous les chèques aux États-Unis.

Tout au long des années 1990 et 2000, Le Cun a continué à faire œuvre de pionnier dans l'utilisation du CNN pour reconnaître des objets, notamment des voitures, des animaux et des visages humains.

Yann LeCun, Geoffrey Hinton et Yoshua Bengio reçoivent le Prix Turing

En 2019. Les trois pionniers de l'apprentissage profond Yann LeCun, Geoffrey Hinton et Yoshua Bengio reçoivent le prix Turing en 2019, considéré comme le "prix Nobel de l'informatique".

À noter que le Montréalais Yoshua Bengio, l'un des trois meilleurs experts mondiaux en IA, a choisi de poursuivre ses activités de chercheur, professeur, homme d'affaires et citoyen engagé dans la métropole québécoise. Il est en partie responsable du rayonnement et de l'attrait de Montréal comme " carrefour de l'intelligence profonde ", avec la plus grande communauté universitaire d'IA de la planète

Cours de Yann LeCun
Source : Cours de Yann LeCunn sur YouTube

Depuis 2013, Yann LeCun est Chief AI Scientist pour Facebook AI Research (FAIR) et globalement aujourd'hui pour le groupe Meta (Facebook, WhatsApp, Instagram, etc..).

Il est également professeur argenté à l'Université de New York à temps partiel, principalement affilié au NYU Center for Data Science, et au Courant Institute of Mathematical Sciences.

Présentation de Yann LeCun sur le site de Meta

FAQs

Quelle est la différence entre l'intelligence artificielle, le Machine Learning et Deep Learning?

L'intelligence artificielle (IA), l'apprentissage machine (ML) et l'apprentissage profond (DL) sont des technologies complexes. L'IA automatise les processus de décision par le biais de systèmes informatiques, tandis que le ML permet aux ordinateurs de prendre des décisions avec un minimum de supervision humaine en identifiant des modèles dans les données.

En revanche, le DL est une forme avancée de Machine Learning qui vise à imiter les capacités humaines en matière de reconnaissance et de prise de décision. Les différences entre ces trois technologies résident dans les capacités informatiques qu'elles utilisent pour atteindre les résultats souhaités.

Par exemple, Quel type de problème peut résoudre le Machine Learning et Deep Learning?

Le Machine Learning (ou apprentissage automatique) et l'apprentissage profond (DL) permettent aux ordinateurs de reconnaître des modèles dans de grands ensembles de données.

Ces technologies ont des applications révolutionnaires dans de nombreux domaines, tels que la cybersécurité et la santé. La ML peut détecter des anomalies et des intentions malveillantes en ligne, tandis que la DL est utilisée dans les applications de santé pour l'analyse, le diagnostic et les traitements d'imagerie médicale. Les solutions DL peuvent être employées pour l'automatisation des opérations commerciales.

Dans l'ensemble, la ML/DL offre d'énormes possibilités de résoudre des problèmes dans de nombreux domaines.

Conclusion.

En conclusion, le Machine Learning et le Deep Learning sont tous deux des types d'intelligence artificielle utilisés pour résoudre des problèmes complexes dans le monde. Leur choix dépend de la complexité du problème à résoudre et des ressources disponibles.

Le ML est plus facile à mettre en œuvre mais ne nécessite pas autant de données que le Deep Learning. Le Deep Learning, quant à lui, est très précis et peut traiter des problèmes spécifiques grâce à un grand ensemble analytique.

En réalité, les avantages et fonctionnalités offerts par le ML et le DL peuvent vous aider à améliorer votre entreprise & de plus, vous fournir une solution plus efficace aux problèmes rencontré dans le monde.

profil auteur de stephen MESNILDREY
Stephen MESNILDREY
Digital & MarTech Innovator

Votre temps est précieux... imaginez :

Doubler votre productivité en 30 jours...Réduire vos coûts opérationnels de 40%...Augmenter votre ROI de 25% en 6 mois...

Impossible ? Et pourtant :

  • ✅ 71 000+ dirigeants ont vu leur croissance grimper de 35% en moyenne
  • ✅ 5 ans à guider des startups vers le succès (valorisées à 20M€+)
  • ✅ 100 000+ professionnels puisent leur inspiration dans mes articles chaque mois

Vous voulez garder une longueur d'avance ? Vous êtes au bon endroit ! 💡

📩 Abonnez-vous à ma newsletter et recevez chaque semaine :

  • 👉 1 stratégie prête à l'emploi à fort impact
  • 👉 2 outils SaaS transformateurs analysés en détail
  • 👉 3 applications d'IA concrètes pour votre domaine

L'aventure commence maintenant... et elle promet d'être extraordinaire ! 🚀

🔗 DIVULGATION SUR LES LIENS D'AFFILIATION
Notre politique stricte interdit toute recommandation basée uniquement sur des accords commerciaux. Ces liens peuvent générer une commission sans coût supplémentaire pour vous si vous optez pour un plan payant. Ces marques - testées et approuvées 👍 - contribuent à maintenir ce contenu gratuit et faire vivre ce site web 🌐

Pour plus de détails, consultez notre processus éditorial complet mise à jour le 01/08/2024.