⬆
Outils de Reporting et d'Analyses

Google Data Studio: Présentation ComplÚte, Avis et Tarifs en 2024

Google Data Studio avis

Créez des rapports personnalisés avec Google Data Studio. Visualisez vos données marketing en temps réel. Décisions éclairées avec Google Data Studio.

ESSAYEZ Google Data Studio ★★★★☆
badges

Version Gratuite

Version d'Essai

Version Payante

4.4

/5 | 50 Avis vérifiés

À partir de

0

$

/mois

États Unis (San Francisco)

Google Data Studio: Aperçu Rapide en 30 Secondes Chrono ⏱

logo Google Data Studio
DĂ©couvrir le deal EXCLUSIF en cliquant ici
arrow CTA right

Qu'est-ce que Google Data Studio ?

Google Data Studio est l'un des outils de BI les plus populaires sur le marché, créé par Google.  Il vise à la simplicité, et ses capacités sont donc assez limitées. Data Studio a l'air sympa en apparence, mais en fait, ses fonctions sont fragmentées et peu abouties.

Google Data Studio fonctionne mieux si l'organisation utilisait déjà BigQuery de Google (entre autres outils Google) pour l'entreposage des données et disposait d'un flux de travail pour le nettoyage et la transformation des données.

Il y a également un tableau récapitulatif d'évaluation à la fin du post qui résume bien notre évaluation de Data Studio.

À qui s'adresse Data Studio ?

D'aprĂšs notre Ă©valuation de Google Data Studio, l'outil semble cibler un ensemble d'utilisateurs semi-techniques, qui travaillent avec des chiffres et connaissent trĂšs bien Excel. Ils peuvent mĂȘme connaĂźtre un peu de langage de script (Python, JS), mais ne sont pas assez techniques pour travailler sur l'infrastructure des donnĂ©es ou pour crĂ©er des rapports complets Ă  partir de zĂ©ro, ou encore pour Ă©laborer des analyses complexes qui nĂ©cessitent des acrobaties SQL.

Il s'agit essentiellement de ce que les gens appellent des "analystes d'entreprise". Ils comprennent bien les problÚmes de l'entreprise, peuvent parler le langage de l'entreprise et un peu le langage des données, et ont besoin d'un outil pour rassembler et présenter de jolis rapports aux clients ou aux parties prenantes internes.

Fonctionnalités

Google Data Studio comporte 4 concepts importants : Dataset, Connector, Data Source, Report.

gds-concepts

Les concepts de Google Data Studio et leurs liens

L'ensemble de données est la couche "physique" qui sous-tend tout (et stocke les données), tandis que la source de données est la couche "logique" avec des propriétés et des fonctionnalités supplémentaires. Un connecteur est le "tuyau" qui relie ces deux couches.

Un ensemble de donnĂ©es peut ĂȘtre bien plus qu'un simple tableau ou un fichier Excel. Quelques exemples :

  • Vues de rapports Google Analytics
  • Feuilles de calcul Google Sheets, fichiers CSV tĂ©lĂ©chargĂ©s sur Drive
  • Bases de donnĂ©es MySQL, PostgreSQL
  • etc...

La source de données est créée au-dessus de l'ensemble de données avec des fonctionnalités supplémentaires :

  • Partageable : bien que vous soyez le seul Ă  avoir accĂšs Ă  votre ensemble de donnĂ©es sous-jacent, la source de donnĂ©es peut ĂȘtre partagĂ©e de la mĂȘme maniĂšre que n'importe quelle autre ressource Google (avec des autorisations de propriĂ©taire, de modification et de visualisation...).
  • Configurable : vous pouvez modifier les noms des champs, le type d'agrĂ©gation, crĂ©er des champs calculĂ©s, dĂ©sactiver des champs...

Connecteur : La Google Data Studio n'importe pas vos données - elle utilise un connecteur pour avoir accÚs à vos données sous-jacentes réelles. Outre les connecteurs officiels de Google, il existe des connecteurs partenaires et des connecteurs open-source permettant d'accéder aux données d'autres plateformes telles que Facebook, GitHub ou Twitter.

Bien qu'il dispose d'un grand nombre de connecteurs qui facilitent la connexion des données, les connecteurs fournis par la communauté ne sont pas toujours stables car ils ne sont pas toujours bien entretenus.

gds-connectors

Google Data Studio prend en charge un grand nombre de connecteurs, certains fournis par Google, d'autres par des partenaires et des communautés.

Enfin, un rapport est la présentation finale et visuelle des données provenant de différentes sources de données. Nous parlerons davantage d'un rapport dans la section ci-dessous.

Prenons un exemple simple oĂč vous voulez analyser les donnĂ©es d'une transaction de vente dans un fichier Excel que vous stockez dans GDrive.

  • Vous dĂ©marrez Google Data Studio, et utilisez leur connecteur Google Drive pour vous connecter Ă  Google Drive (jeu de donnĂ©es).
  • Vous crĂ©ez ensuite une source de donnĂ©es basĂ©e sur ce fichier Excel particulier dans Google Drive. Vous ajoutez ensuite une formule personnalisĂ©e (calculer la marge brute sur la base du prix de vente et du coĂ»t), ou supprimez les champs/donnĂ©es inutiles dans la source de donnĂ©es.
  • Ensuite, vous crĂ©ez un rapport avec plusieurs visualisations pour prĂ©senter diffĂ©rents aspects de vos donnĂ©es dans la source de donnĂ©es. Vous pouvez partager ce rapport avec diffĂ©rentes parties prenantes. C'est fait !

1. Rapports

Google Data Studio s'articule autour du concept de "rapport". Un rapport dans Google Data Studio a une ressemblance frappante avec Google Drawing ou Google Slides. Google Data Studio n'a pas le concept de tableau de bord.

ComparĂ© Ă  d'autres outils de BI, oĂč les rapports sont gĂ©nĂ©ralement constituĂ©s d'un graphique ou d'un tableau, et oĂč le tableau de bord est constituĂ© de plusieurs graphiques, avec un concept de mise en page basĂ© sur une grille trĂšs fixe, nous pensons que c'est l'un des aspects les plus agrĂ©ables de Google Data Studio.

Du cĂŽtĂ© de l'Ă©dition, l'outil offre une interface glisser-dĂ©poser trĂšs interactive, oĂč l'utilisateur peut librement redimensionner et aligner les graphiques. Cela donne plus de libertĂ© aux concepteurs, mais peut irriter ceux qui ne veulent que des graphiques rapides et agrĂ©ables qui sont arrangĂ©s automatiquement.

Cette approche s'aligne bien sur les analystes d'affaires semi-techniques qui ont l'habitude d'embellir les diapositives Powerpoint.

Filtrage des données dans Google Data Studio

Le filtrage des données dans Google Data Studio est fragmenté. Il existe différents types de filtres dans Google Data Studio : Plage de dates, ContrÎle des filtres, ContrÎle des données, Filtres spécifiques aux cartes.

Un filtre est lié à une source de données et prend le contrÎle de certains champs/dimensions de cette source de données.

Lorsque la valeur du filtre est modifiĂ©e, cette modification se rĂ©percute sur la source de donnĂ©es, gĂ©nĂ©rant de nouvelles requĂȘtes qui sont envoyĂ©es au jeu de donnĂ©es sous-jacent. Les rĂ©sultats sont stockĂ©s dans le cache des requĂȘtes, puis les graphiques sont mis Ă  jour en consĂ©quence.

gds-filter-mechanism

Modélisation des données

Dans une source de données, nous pouvons ajouter un nouveau champ et spécifier son type. Les champs de type catégorique comme le texte, la date, le booléen... seront classés comme Dimension, tandis que les nombres sont classés comme Métriques. Chaque métrique est liée à une méthode d'agrégation par défaut.

La syntaxe de Formula est une version simplifiĂ©e de la syntaxe SQL standard de BigQuery. Les fonctions prises en charge rĂ©pondent Ă  la plupart des cas d'utilisation populaires, mais elles sont un peu insuffisantes dans les cas limites oĂč vous souhaitez une formule plus compliquĂ©e :

En bref, il semble facile au début de s'habituer à cette fonctionnalité, mais elle comporte quelques bizarreries. En outre, elle ne permet pas actuellement de définir des relations (jointures) entre différentes sources de données, ce qui est trÚs limitatif comme vous le lirez ci-dessous.

Exploration

Google Data Studio a récemment introduit la fonction Explorer (encore en mode Labs/beta) qui permet à l'utilisateur d'explorer une seule source de données dans une version simplifiée de Data Studio. Il s'agit probablement d'un moyen pour Google de répondre aux besoins de certains utilisateurs en matiÚre d'interface d'exploration de données rapide et sale.

Cependant, nous pensons qu'avec une couche d'abstraction de données limitée (sans relations entre les sources de données), le développement de cette fonctionnalité sera limité, à moins que la couche de modélisation sous-jacente soit suffisamment complexe.

Combinaison de données

La combinaison de données provenant de sources multiples est l'une des caractéristiques les plus importantes d'un outil de BI. Nous examinons ci-dessous comment la Google Data Studio vous aide à le faire.

Google Data Studio a introduit la fonctionnalité de Data blending qui permet aux utilisateurs de combiner différentes sources de données en une seule. Cette fonctionnalité est à la fois similaire et différente d'une JOIN SQL. Comme Google l'a défini, il s'agit d'un LEFT JOIN et Google Data Studio permet de combiner jusqu'à 5 sources en une seule opération.

À notre avis, cette fonctionnalitĂ© est sous-dĂ©veloppĂ©e et n'est utile que pour un petit nombre de cas d'utilisation spĂ©cifiques.

gds-blend-data

Examinons les différents scénarios de jointure suivants :

  • MĂ©lange de deux sources de donnĂ©es
  • MĂ©lange de 3 sources de donnĂ©es ou plus avec les mĂȘmes clĂ©s de jointure
  • MĂ©lange de 3 ou plusieurs sources de donnĂ©es avec des clĂ©s de jointure diffĂ©rentes

Les sources de donnĂ©es mĂ©langĂ©es sont appelĂ©es "vues de donnĂ©es" et ne sont disponibles que dans le rapport crĂ©Ă©, ce qui signifie qu'elles ne peuvent pas ĂȘtre partagĂ©es ou rĂ©utilisĂ©es. En d'autres termes, l'idĂ©e du mĂ©lange de donnĂ©es semble excellente, mais l'exĂ©cution n'est pas Ă  la hauteur. S'il est dĂ©veloppĂ© davantage, le Data Blending sera un excellent compagnon du mode Explorer.

ContrÎle d'accÚs et partage des données

Les rapports et les sources de donnĂ©es ont le mĂȘme mĂ©canisme de partage, de permission et de propriĂ©tĂ© qu'un document sur Google Drive, mais sans structure de dossier. Lorsqu'ils sont crĂ©Ă©s, ces objets sont enregistrĂ©s en tant que "fichier inconnu" dans le dossier principal de Google Drive, ce qui est assez dĂ©sordonnĂ©.

Le partage des données est facile pour les individus, mais pour les groupes, Google Data Studio s'appuie sur Google Groups, ce qui ajoute des frictions à l'expérience. En fait, le mécanisme est assez restrictif pour les grandes organisations qui ont besoin d'un contrÎle complexe des autorisations.

gds-access-control

Par exemple, lorsqu'un utilisateur quitte une organisation, le processus de transfert de propriĂ©tĂ© dans Data Studio est actuellement maladroit. Il arrive que le compte Gmail d'un utilisateur soit dĂ©sactivĂ© avant qu'il ne puisse transfĂ©rer la propriĂ©tĂ© de ses rapports et sources de donnĂ©es, ce qui entraĂźne la dĂ©sactivation de centaines de sources de donnĂ©es qui doivent ĂȘtre reconnectĂ©es Ă  l'ensemble de donnĂ©es. Ce processus est assez long, fastidieux et parfois ingĂ©rable.

Intégrations

Google Data Studio s'intÚgre bien avec les autres produits de l'écosystÚme Google, principalement les produits de base de données (BigQuery, Spanner, Cloud SQL...), les produits de gestion des annonces et des campagnes (Google Analytics, Adwords, Youtube Analytics...) et Google Sheets.

  • BigQuery : Google Data Studio peut facilement se connecter aux tables et aux vues de BigQuery, et il prend Ă©galement en charge le SQL personnalisĂ© pour aider les utilisateurs Ă  optimiser les performances des tableaux de bord et le coĂ»t des requĂȘtes. Chaque table, vue et SQL personnalisĂ© agit comme un ensemble de donnĂ©es.
  • Google Sheets : Chaque feuille d'une feuille de calcul Google est un ensemble de donnĂ©es sĂ©parĂ©, ce qui signifie que chaque source de donnĂ©es ne se connectera qu'Ă  une seule feuille d'une feuille de calcul. Les donnĂ©es de la feuille doivent ĂȘtre sous forme de tableau pour que Google Data Studio fonctionne correctement.
  • Applications (GA, Youtube, Google Ads) : Google Data Studio dispose de connecteurs officiels Ă  Google Analytics, Youtube Analytics et autres. En se connectant Ă  ces sources, Google Data Studio reconnaĂźt automatiquement les dimensions et mĂ©triques disponibles. Il existe Ă©galement des modĂšles Google Data Studio conçus pour fonctionner instantanĂ©ment avec Google Ads ou Youtube Analytics, et il existe mĂȘme un filtre dĂ©diĂ© pour contrĂŽler les sources de donnĂ©es GA dans Google Data Studio. Cependant, les donnĂ©es obtenues via ces connecteurs officiels ne sont que des donnĂ©es agrĂ©gĂ©es (et Ă©ventuellement Ă©chantillonnĂ©es).
  • Travailler avec une stack non-Google : Comme indiquĂ© ci-dessus, outre les connecteurs officiels vers les produits Google, Google Data Studio propose des centaines de connecteurs Ă©crits par des partenaires de Google, ainsi que quelques connecteurs open source. Ces connecteurs vous aident Ă  explorer les donnĂ©es publiques (ou parfois privĂ©es) d'autres sites Web, dont les connecteurs de mĂ©dias sociaux et de plateformes publicitaires reprĂ©sentent la plus grande partie.

Tarifs

Pour l'instant, Google Data Studio est proposé gratuitement par Google dans le cadre de son offre Google Cloud Platform.

Il est probable que Google commence Ă  faire payer ce service (ou une version premium de celui-ci) Ă  l'avenir, Ă  l'instar de Google Analytics (avec Google Analytics 360).

Avis Final

Dans l'ensemble, nous pensons que Google Data Studio est un outil de BI décent, idéal pour les rapports dont la structure des données est simple, mais dont les exigences de formatage sont complexes (c'est-à-dire que les données ne sont pas complexes, mais que les utilisateurs finaux ont besoin de rapports sophistiqués).

Quelques points clés sont mis en évidence ci-dessous :

  • Conçu pour les utilisateurs semi-techniques, c'est-Ă -dire les analystes commerciaux.
  • Plusieurs connecteurs de donnĂ©es qui prennent en charge de nombreuses intĂ©grations, mais aucune garantie de connecteurs contribuĂ©s par la communautĂ©.
  • Leur vue des rapports avec une expĂ©rience de type Powerpoint est unique et se dĂ©marque des autres outils que nous connaissons.
  • Leur modĂ©lisation des donnĂ©es est faible et trĂšs basique, ce qui les rend incapables d'effectuer des opĂ©rations compliquĂ©es et des rapports en libre-service. Il n'y a pas d'exploration et les capacitĂ©s de filtrage sont standard.
  • Le mĂ©lange de donnĂ©es a du potentiel, mais il est encore trĂšs limitĂ© et il est difficile pour les utilisateurs de manipuler et de joindre les donnĂ©es (ce qui prend gĂ©nĂ©ralement 80 % du temps).
  • Conçu pour complĂ©ter la stack Google Cloud et fonctionne bien avec elle. RecommandĂ© uniquement si vous utilisez dĂ©jĂ  (ou dĂ©cidez de le faire) les services de Google et de GCP.
photo stephen mesnildrey
Stephen MESNILDREY
Digital & MarTech Innovator

Votre temps est précieux... imaginez :

Doubler votre productivité en 30 jours...Réduire vos coûts opérationnels de 40%...Augmenter votre ROI de 25% en 6 mois...

Impossible ? Et pourtant :

  • ✅ 71 000+ dirigeants ont vu leur croissance grimper de 35% en moyenne
  • ✅ 5 ans Ă  guider des startups vers le succĂšs (valorisĂ©es Ă  20M€+)
  • ✅ 100 000+ professionnels puisent leur inspiration dans mes articles chaque mois

Vous voulez garder une longueur d'avance ? Vous ĂȘtes au bon endroit ! 💡

đŸ“© Abonnez-vous Ă  ma newsletter et recevez chaque semaine :

  • 👉 1 stratĂ©gie prĂȘte Ă  l'emploi Ă  fort impact
  • 👉 2 outils SaaS transformateurs analysĂ©s en dĂ©tail
  • 👉 3 applications d'IA concrĂštes pour votre domaine

L'aventure commence maintenant... et elle promet d'ĂȘtre extraordinaire ! 🚀

Connections-nous sur les RĂ©seaux Â đŸ«”
🔗 DIVULGATION SUR LES LIENS D'AFFILIATION
Notre politique stricte interdit toute recommandation basĂ©e uniquement sur des accords commerciaux. Ces liens peuvent gĂ©nĂ©rer une commission sans coĂ»t supplĂ©mentaire pour vous si vous optez pour un plan payant. Ces marques - testĂ©es et approuvĂ©es 👍 - contribuent Ă  maintenir ce contenu gratuit et faire vivre ce site web 🌐

Pour plus de détails, consultez notre processus éditorial complet mise à jour le 01/08/2024.